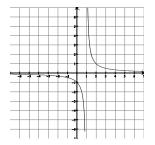
AP CALCULUS	LECTURE NOTES	MR. RECORD
Section Number:	Topics: Concavity	Day: 1 of 2
3.4		

Consider the following function:

$$f(x) = \frac{1}{x - 1}$$



Note: f(x) is concave downward on $(-\infty,1)$ and concave upward on $(1,\infty)$

Definition of Concavity

Let f be differentiable on an open interval I. The graph of f is **concave upward** on I if f is increasing on the interval and **concave downward** on I if f is decreasing on the interval.

Test for Concavity

Let f be a function whose second derivative exists on an open interval I.

- 1. If f''(x) > 0 for all x in I, then the graph of f is concave upward in I.
- 2. If f''(x) < 0 for all x in I, then the graph of f is concave downward in I.

Definition of a Point of Inflection

A point of inflection (p.o.i.) is an ordered pair where a graph changes concavity.

Points of Inflection Theorem

If (c, f(c)) is a point of inflection of the graph of f, then either f''(x) = 0 or f is not differentiable at x = c.

Example 1: Determine the open intervals on which each graph is concave upward or downward and state any points of inflection.

a.
$$f(x) = \frac{6}{x^2 + 3}$$

b.
$$f(x) = \frac{x^2 + 1}{x^2 - 4}$$

c.
$$f(x) = x^4 - 4x^3$$

AP CALCULUS	LECTURE NOTES	MR. RECORD
Section Number: Topics: The Second Derivative Test		Day: 2 of 2
3.4		

The Second Derivative Test

Let f be a function such that f'(x) = 0 and the second derivative of f exists on an open interval containing c.

- 1. If f''(x) > 0, then f(c) is a relative minimum.
- 2. If f''(x) < 0, then f(c) is a relative maximum.

Example 2: Find the relative extrema for $f(x) = -3x^5 + 5x^3$ using the Second Derivative Test.

Example 3: Given the values below for x, f'(x) and f''(x), answer each of the following.

х	-3	-1	1	3	5
f(x)	-2	1	-1	-4	3
f'(x)	1	0	-1	0	2
f''(x)	-2	-1	0	2	3

- **a.** Identify all *x*-values where *f* has a relative minimum. Justify.
- **b.** Identify all *x*-values where *f* has a relative maximum. Justify.
- **c.** Identify all *x*-values where *f* has a point of inflection. Justify.
- **d.** What is the equation of the tangent to the curve y = f(x) at x = 5?